INTRODUCTION

Statement of Problem

Cochlear implants (CIs) have dramatically improved the speech recognition abilities of individuals with severe-to-profound hearing loss. Before CIs were available as a treatment option, it was not uncommon for adults with acquired hearing loss to obtain word recognition scores in the single digits (e.g., Svirsky et al. 1992; Rubinstein et al. 1999). Now adults with acquired hearing loss who receive CIs often achieve mean recognition scores better than 40% correct for words in isolation (e.g., Skinner et al. 1997; Firszt et al. 2004; Holden et al. 2013). When words are presented in sentences, outcomes are even better: Many adults with CIs are able to recognize more than 70% of words in sentences correctly (Skinner et al. 1997; Firszt et al. 2004; Park et al. 2011), especially when the sentences are highly predictable (Gifford et al. 2008). The reason that sentence context facilitates recognition so strongly is that listeners can use their knowledge of how language is structured to constrain word possibilities. Recently, Boothroyd (2013) invoked Bayesian mathematics to explain this effect. According to this model, the more probable a specific word choice is based on factors such as syntactic and semantic structure, the less sensory evidence that is required for the listener to select that word. Because of these effects, Boothroyd has advocated that aural rehabilitation with adults include activities to help them learn how to effectively apply their knowledge of language structure to the task of speech recognition (e.g., Boothroyd 2007, 2010).

The question of how to approach rehabilitation with children is more complicated. Unlike adults who lose their hearing after acquiring a first language, children who are born deaf and get CIs must acquire knowledge about language structure strictly from the signals provided through those CIs. As beneficial as these devices have proven to be, CIs continue to deliver only degraded spectral signals to their users. Moreover, frequency-place misalignments in the auditory system and incomplete neural survival further diminish the signal quality available to CI users (e.g., Wilson & Dorman 2008; Mahalakshmi & Reddy 2012). This situation strongly predicts that children with CIs would encounter difficulty acquiring sensitivity to word-internal (i.e., phonological) structure. That kind of structure is specified by spectral details in the acoustic signal, such as the formant frequencies that help define vowel quality and the formant transitions that can specify place of consonantal constrictions.

Typical methods for examining sensitivity to phonological structure involve asking children to make decisions about word-internal elements, including syllables and phonemes. For example, children might be asked if words resemble each other in some way (e.g., rhyming) or if they share a common phoneme. As expected, when such tasks have been used with children...
with CIs, it has consistently been observed that these children lag behind children with normal hearing (NH) in developing sensitivity to phonological structure (James et al. 2005; Spencer & Tomblin 2009; Johnson & Goswami 2010; Ambrose et al. 2012; Nittrouer et al. 2012). Because phonemes are often viewed as the “building blocks of language,” the question arises of whether the acquisition of the kinds of language structures known to facilitate word recognition (e.g., syntactic and semantic structure) in everyday discourse can proceed independently of sensitivity to phonological structure for children with CIs. The question addressed by the present study was whether or not that difficulty acquiring sensitivity to phonological structure affects the abilities of children with CIs to acquire knowledge about grammatical structures.

Evidence Regarding a Relationship Between Phonological and Grammatical Development

For children with NH, the question of whether the acquisition of word-internal and sentence-level structure is independent has been addressed by studies seeking to characterize specific language impairment (SLI) and developmental dyslexia (Ramus et al. 2013). SLI is defined by deficits in a number of areas, including syntax, morphology, and phonology (Leonard 1998). Dyslexia is associated primarily with phonological deficits, which are widely viewed as being causal to delays in learning to read (Vellutino et al. 2004). Nonetheless, children diagnosed with dyslexia are often found to have difficulty comprehending and producing sentences with complex syntactic structures (e.g., Byrne 1981; Stein et al. 1984; Smith et al. 1989; Bar-Shalom et al. 1993). Consequently, there is overlap in the deficits exhibited by children receiving each diagnosis, perpetuating the debate about whether phonological and grammatical skills are acquired in a dependent or independent manner (Bishop & Snowling 2004).

To examine thoroughly this question of a relationship between phonological and grammatical skills in children with NH, Ramus et al. (2013) administered a wide range of standard language measures—some dependent on phonological structure and some dependent on other kinds of linguistic structure—to children previously diagnosed with dyslexia, SLI, both, or neither. The children with one or both of the diagnoses were between the age of 8 and 12 years; children with neither diagnoses formed two control groups: one based on chronological age (so their language and reading abilities were superior to those of children in the diagnosed groups) and one based on language or reading age (so they were younger). These investigators found strong evidence of independence in the emergence of the two sorts of structure across the groups, even for the children receiving both diagnoses. The nonphonological language measures were found to explain performance on the tests of syntax, morphology, and vocabulary. The phonological measures explained performance in working memory and rapid serial naming. Thus, for children with NH at least, these two components of language apparently can develop independently, even though there is substantial comorbidity in deficits of a phonological and nonphonological nature (Catts et al. 2005).

One finding of the Ramus et al. (2013) experiment that was striking was the lack of significant correlation between sensitivity to phonological structure and vocabulary size. For adults, the lexicon is organized according to phonemic structure (e.g., Liberman & Shankweiler 1985; Luce & Pisoni 1998, but cf. Port 2007). However, the lexicon apparently does not start out with this highly segmental organization. Instead, the syllable or word is usually considered to be the initial unit of linguistic contrast (e.g., Waterson 1971; Menn 1978; Vihman & Vellerman 1989). Pressure from an expanding lexicon is thought to provoke a restructuring of words in the lexicon according to phonological form, a process that continues through middle childhood (Vihman & Vellerman 1989; Walley 1993; Beckman & Edwards 2000; Walley et al. 2003). For example, in 1975, Ferguson and Farwell wrote “a phonic core of remembered lexical items and the articulations that produced them is the foundation of an individual’s phonology, . . . even though it may be heavily overlaid or even replaced by phonologically organized acquisition processes in later stages” (p. 36). Careful analyses in the decades since that statement was written have provided support for that position, with Storkel writing in 2002 “…children may be able to rely on more holistic representations [than adults] to uniquely differentiate each word from every other, and these representations may become more detailed as words are acquired” (p. 253). Thus, there is widespread agreement that lexical restructuring occurs for children with NH. When it comes to children with CIs, however, degraded spectral signals may interfere with this process, leaving lexical representations closer to fitting a holistic description longer into childhood.

If this account is accurate, it could be hypothesized that the acquisition of some language structures would be more resistant than others to delayed development in sensitivity to phonological structure. For example, it could be argued that even if words are represented in the lexicon as more or less undifferentiated wholes, it would nonetheless be possible to learn how to combine those words in sentence construction, a position suggested by Beckman and Edwards, who in 2000 wrote “…there has recently been a surge of evidence supporting a core role for the lexicon in grammatical organization in general” (p. 240). Thus, some aspects of syntax could be learned unfettered by the effects of deficient phonological sensitivity. Problems listening in noise might diminish opportunities to hear those syntactic structures, imposing an obstacle of a different sort on acquisition, but intervention focused on teaching syntax could reasonably be expected to counteract that diminished opportunity for language exposure.

However, sensitivity to word-internal phonemic structure should affect children’s learning about how word forms change based on syntactic structure (i.e., morphology). Pervasive difficulties acquiring bound morphemes have been observed for children with NH who are diagnosed with language impairments (e.g., Bellaire et al. 1994), and it has been suggested that the problem may stem from poor phonological representations (e.g., Connell & Stone 1992). Consequently, it is reasonable to suggest that the difficulties children with CIs experience in developing clear phonological representations, arising from poor access to spectral detail in the acoustic signal, could negatively affect their abilities to learn about morphological structure, especially bound morphemes.

Language Development in Children With CIs

One study specifically asked whether the diminished access of children with CIs to spectral detail affects their acquisition of word-internal morphological structure more than their
acquisition of whole morphological units. Using a series of probes, Svirsy et al. (2002) observed that children with CIs were no better than age-matched peers with SLI at using bound morphemes to mark verb tense but excelled at using uncontracted copulas. Bound morphemes are appended to words, making them part of the word-internal structure; uncontracted copulas are separate words. Consequently, this outcome matches the prediction that children with CIs could learn elements of morphosyntactic structure involving whole words more readily than elements that are components of words. Supporting that suggestion is evidence from another study. Recently, Guo et al. (2013) showed that children with CIs used tense markers with verbs less frequently in language samples than age-matched peers developing language typically. A goal of the present study was to investigate whether the acquisition of bound morphemes is related to the discovery of word-internal structure for children with CIs.

An experiment involving children with mild-to-moderate hearing loss provides even more support for the suggestion that some language structures should develop in children with CIs unhindered by phonological constraints. The authors of this experiment (Briscoe et al. 2001) investigated vocabulary, grammatical understanding, phonological processing skills, and literacy in children (5 to 10 years old) with SLI, children with mild-to-moderate hearing loss, and children with neither condition. Results showed that the children with hearing loss performed similarly to the children with SLI on all the phonological processing tasks but were indistinguishable from the children with neither condition on the grammatical and literacy tasks. These findings led the authors to conclude that "...phonological problems that are tightly linked to language and literacy difficulties in normally hearing children can be dissociated from other language skills in the hearing impaired." (p. 338).

A primary goal of the current investigation was to examine whether a similar dissociation between phonological skills and grammatical abilities would be found for children with hearing loss significant enough to warrant CIs.

The investigations that have been conducted so far on grammatical skills in children with CIs show developmental lags compared to those of children with NH. For example, a study by Geers et al. (2003) examined the development of grammatical structure in 181 children with CIs, and 24 age-matched peers with NH, all tested at the age of 8 to 9 years. As the measure of grammatical structure, the Index of Productive Syntax (Scarborough 1990) was used. With this instrument, trained listeners review language samples from children. Occurrences of 56 syntactic and morphological forms are evaluated, providing scores of complexity in noun phrases, verb phrases, questions/negations, and sentence structures. When Geers et al. (2003) applied this index, the mean score of children with CIs was 1.13 standard deviations (SDs) below the mean of the control group (i.e., Cohen’s $d = 1.13$). Thus, this study suggests that children with CIs trail their peers with NH in grammatical development.

Of course, the children in the Geers et al. (2003) study received their implants nearly two decades ago, when the devices were different from current ones and bilateral implantation was rare. Bilateral implants could provide a boost to the development of grammatical abilities by aiding speech recognition in noise. As already suggested, delays in grammatical abilities would be expected to arise at least partly because of diminished opportunity for children with CIs to hear the ambient language in noise. Finally, many of the children in the Geers et al. study did not receive their first implants until the age of 4 or 5 years, which is late by current standards. Given improved technology, the use of bilateral CIs, and earlier implantation, it seemed worthwhile to assess the development of language structure for children with CIs at present.

One study that did investigate potential effects of a significant change in treatment approach for children with CIs was Boons et al. (2012). These investigators used the Reynell Developmental Language Scales and the Schlinghting Expressive Language Test to evaluate language development in deaf children as a function of whether they received one or two implants. In that study, all children received their first implant before the age of 3 years and were tested 3 years after receiving that implant. That means all children would have been 4 or 5 years old when tested. Testing occurred between 2003 and 2009, which means that these children received their first implants between 2000 and 2006, which is more recently than the children in the Geers et al. (2003) study received theirs. Although Boons et al. (2012) found that children with bilateral implants performed significantly better than children with unilateral implants, outcomes were somewhat perplexing. Children with bilateral implants performed roughly 1 SD below normative means (i.e., Cohen’s $d = 1.00$), which is similar to what Geers et al. reported in 2003 for children who presumably had only unilateral implants. The difference in the Boons et al. study was that the children with unilateral implants performed closer to 2 SDs below normative means. Consequently, children with bilateral implants and newer technology in the Boons et al. study performed similarly to children with unilateral implants and older technology in the Geers et al. study. This difference across studies could be a result of the differences in test materials, but there is no way to ascertain if that is the case. Thus, questions remain open regarding potential effects of various treatment approaches to childhood hearing loss on grammatical acquisition.

Goals of the Present Study

In total, the present study had three goals. First, the use of several language structures in the narrative samples from children with CIs was examined with Systematic Analysis of Language Transcripts, or SALT (Miller & Iglesias 2010) and compared to that of same-age peers with NH. SALT was used to assess how well children incorporate specific structures into the language they produce because it seemed most complementary to how the contributions of language knowledge to speech recognition is measured: that is, with open-set sentence recognition (e.g., Nittrouer & Boothroyd 1990). Furthermore, the practice of analyzing fairly unstructured language samples is widely viewed as more ecologically valid than formal testing with specific constructions and has successfully been shown to identify language deficits in children of kindergarten age (Hewitt et al. 2005).

To achieve this first goal, five language measures served as the focus of investigation. Two measures involved syntax, and they were the mean length of utterance in morphological units (henceforth MLU) and the number of conjunctions, excluding *and*. MLU is a reliable metric of syntactic development that can uncover language delays across a wide range of ages (e.g., Rice et al. 2010); the number of conjunctions provided an additional metric of sentence complexity (e.g., Menyuk 1969; Bloom et al. 1980).
Two measures used in this study involved morphological structure and involved children’s appropriate use of personal pronouns and bound morphemes. Pronouns are independent morphological units, so it could be predicted that learning to use pronouns would not be strongly dependent on sensitivity to phonological structure. Personal pronouns were specifically selected out of the larger set of pronouns that are counted by SALT because the accurate use of these pronouns reflects children’s grammatical skills. By contrast, the heavy use of some pronouns (such as demonstratives) can occur for reasons of less interest. For example, the heavy use of demonstrative pronouns may simply reflect a weak vocabulary: it is easy to substitute a general term (e.g., that or this) for an unknown lexical item.

In contrast to pronouns, the ability to use bound morphemes suggests that some analysis of word-internal structure has likely been performed by the child, so the use of these morphological forms should depend heavily on phonological sensitivity. Including both pronouns and bound morphemes in the analysis also meant it was possible to test the validity of the methods implemented in this study more generally. The use of bound morphemes was expected to correlate with phonological awareness, whereas the use of pronouns was not. If evidence to support that prediction was obtained, it would mean that the methods were sensitive to relationships between phonological awareness and language structures, when they existed.

Semantic knowledge was also of interest in this study because this sort of knowledge has consistently been shown to contribute to the recognition of words in sentences (e.g., Kalikow et al. 1977; Boothroyd & Nittrouer 1988; Nittrouer & Boothroyd 1990). For the present study, the most appropriate measure for assessing semantic development was the number of different words used in the analysis sample. Although frequently described as a measure of lexical diversity (e.g., Watkins et al. 1995; Scott & Windsor 2000; Swanson et al. 2005), the number of different words used in discourse has also been described as a metric of semantic development (Miller 1991; Hewitt et al. 2005).

The second and primary goal of the present study was to examine whether any delays in the development of grammatical abilities observed for children with CIs can be related to delays in the acquisition of phonological awareness. On the basis of earlier findings, it was predicted that measures of phonological awareness would yield lower scores for children with CIs than for children with NH. The real question addressed here was whether those anticipated deficits in phonological awareness could account for any observed delays in learning about grammatical structures. This information should be useful in the design of intervention programs. If the acquisition of grammatical structure is heavily dependent on children having sensitivity to word-internal structure, then early intervention needs to focus first on refining phonological forms. If not, then intervention can emphasize grammatical organization, without regard to how well refined children’s phonological structures are; intervention to hone sensitivity to phonological structure could proceed in parallel.

The third goal of this study was to examine the effects of factors arising from childhood hearing loss and its treatment on the development of language skills. The children in the present study were all identified with hearing loss at very young ages, typically before 12 months. All children received their first implants within a restricted time period, generally between 2004 and 2006. This factor is important for experimental design. Many studies examining language performance in school-age children with CIs collect data in a retrospective manner, test children over a wide range of ages, or test over a broad time span. In any case, there is often variability in the generations of CIs represented, which can make it difficult to interpret outcomes. In this study, children were all of similar chronological age at the time of testing and were tested close to the same time, which ensured that the implant technology they received was similar.

Finally, one other language skill was examined in this study: lexical knowledge. It has been proposed that grammatical acquisition for children with CIs may proceed based on lexical representations that may be less refined than those of same-age peers with NH. The question arises of how that difference in representation affects grammatical development. Consequently, it seemed important to examine potential relationships between vocabulary and grammatical skill.

METHOD

Participants

Forty-six children who had just finished kindergarten were tested. Twenty-seven had severe to profound sensorineural hearing loss and wore one or two CIs. Nineteen children had NH. With α set to 0.05, these sample sizes provided 90% power to detect differences between these groups when Cohen’s $d = 1$. Differences of that magnitude or greater were expected going into the study, based on outcomes of others (e.g., Geers et al. 2003). Except for four children with NH, all children had participated in a longitudinal study from the age of 12 to 48 months (Nittrouer 2010). No child with CIs had any condition other than hearing loss that on its own would reasonably be suspected to pose a risk to language development. Intervention services for all children with CIs started soon after they were identified with hearing loss and focused on the development of spoken language. In particular, all children with CIs received services from intervention specialists with a Master’s degree or higher at least once a week from the time they were identified until they reached the age of 3 years. From the age of 3 years until they began kindergarten, these children spent at least 16 hr/week in preschool programs specially designed to serve children with hearing loss. All children attended mainstream kindergarten classes, without sign language interpreters.

Table 1 shows demographic information for the two groups. Socioeconomic status (SES) was indexed using a two-factor scale that incorporates the highest educational level and the occupational status of the primary income earner in the home (Nittrouer & Burton 2005). Scores for each of these factors range from one to eight, with eight being high. Values for the two factors are multiplied together, resulting in a range of possible scores from one to 64. In general, a score of 30 represents a household in which the primary income earner has a 4-year university degree and a job such as a midlevel manager or a teacher. A score of 20 represents a household in which the primary income earner has a high school diploma and works in a service industry, construction, or as a skilled craftsman. An independent-samples t test performed on these scores revealed no significant difference in SES between the two groups.

Three subtests of the Leiter International Performance Scale-Revised (Roid & Miller 2002) were used as an index...
TABLE 1. Means and SDs for demographic measures

<table>
<thead>
<tr>
<th></th>
<th>M (SD)</th>
<th>M (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>Age at time of testing</td>
<td>80 (3)</td>
<td>82 (5)</td>
</tr>
<tr>
<td>Proportion of males</td>
<td>.42</td>
<td>.44</td>
</tr>
<tr>
<td>Socioeconomic status</td>
<td>36 (13)</td>
<td>33 (12)</td>
</tr>
<tr>
<td>Leiter matching raw score</td>
<td>27.4 (2.7)</td>
<td>26.0 (4.9)</td>
</tr>
<tr>
<td>Leiter matching scaled score</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Leiter figure-ground raw score</td>
<td>12.3 (3.7)</td>
<td>11.4 (3.4)</td>
</tr>
<tr>
<td>Leiter classification raw score</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Leiter classification scaled score</td>
<td>14.3 (2.2)</td>
<td>13.6 (4.5)</td>
</tr>
<tr>
<td>Age at identification</td>
<td>8 (8)</td>
<td></td>
</tr>
<tr>
<td>Preimplant better-ear PTAs</td>
<td>99 (18)</td>
<td></td>
</tr>
<tr>
<td>Age at 1st implant</td>
<td>21 (13)</td>
<td></td>
</tr>
<tr>
<td>Mean length of 1st implant use</td>
<td>61 (13)</td>
<td></td>
</tr>
<tr>
<td>Age at 2nd implant</td>
<td>35 (14)</td>
<td></td>
</tr>
</tbody>
</table>

Numbers of participants are shown.
PTA = pure tone average.

of nonverbal cognitive abilities: matching, figure ground, and classification. Raw scores obtained at the age of 48 months are shown in Table 1, excluding the four children with NH who were not part of the original study. Scaled scores were not computed for individual children because raw scores provide more precision, making them more sensitive to group differences in statistical analysis. However, scaled scores corresponding to group means are shown in Table 1. Scaled scores have a mean of 10 and a SD of three. Independent-samples t tests performed on raw scores revealed no significant difference between the two groups on any subtest. The values shown in Table 1 indicate that means were similar across groups, and these children were within the range of normal.

The five bottom rows of Table 1 show audiometric data for the children with CIs. Most children were identified with hearing loss before the age of 1 year and all before 2 years. All but three children had their first implants before the age of 3 years. At the time testing occurred, 18 children had two CIs. Thirteen children with CIs in the study had continued to use a hearing aid for a year or more after they received their first CIs (i.e., had bimodal experience): seven of those children had bilateral CIs at the time of testing (i.e., they eventually received a second implant), five used one CI at the time of testing (i.e., they eventually stopped wearing the hearing aid), and one child used bimodal stimulation at the time of testing.

Equipment and Software

All testing took place in sound-attenuated rooms. All test stimuli were presented via a computer with a Creative Labs Soundblaster digital-to-analog card using a 44.1-kHz sampling rate with 16-bit digitization and a Roland MA-12C powered speaker for audio presentation, placed 1 m in front of the child at 0-degree azimuth. The phonological awareness tasks were presented in audiovisual format using a 1,500-kbps data rate and 24-bit digitization for video presentation.

A SONY HDR-XR550V videorecorder was used for videotaping the sessions. Children wore SONY FM transmitters in specially designed vests that transmitted speech signals to the receivers, which provided direct line input to the hard drives of the cameras to ensure good sound quality for all recordings.

Transcripts were submitted to analysis in SALT (Miller & Iglesias 2010). SPSS version 19 was used for statistical analysis.

General Procedures

All procedures were approved by the Institutional Review Board of the Ohio State University. Data reported here were collected in two sessions, and children had 1 hr or more between sessions. All testing was video-recorded with high-quality audio, so scoring could be done later, except for the tasks of phonological awareness. Responses on those tasks were entered directly into the computer by the examiner.

Stimuli and Task-Specific Procedures

Language Measures • Children’s abilities to use specific language structures were assessed using a 20-min language sample, consisting of several personal narratives. To elicit these narratives, the examiner entered the room with a bandage on one hand. She explained that she hurt her hand and had been to see a doctor. Using a framework of descriptions of how the injury would affect upcoming plans, the examiner elicited personal narratives related to five themes: (1) what happened at a doctor’s visit the child recently had; (2) a fun birthday party the child has attended; (3) the child’s experience playing a favorite sport or game; (4) the best vacation the child has taken; and (5) the best movie the child has seen. The examiner used a stopwatch to keep track of time and ensure that each child had 4 min (± 30 sec) to produce a narrative related to each theme. Topics were introduced to all children in the same order.

A 15-min transcript was generated from each language sample, starting 5 min into the sample. This 5-min delay was implemented on the premise that children might take some time to warm-up to the activity. Two students in Speech and Hearing Science and the laboratory manager trained together on transcription methods for SALT, and were involved in transcribing these samples according to SALT conventions (Miller & Iglesias 2010). One of the two students watched each video and transcribed every utterance the child produced (intelligible and unintelligible) in the 15-min segment. After completing the transcript, the student went back and checked it by watching the video while reading the transcript. Then the second student checked the same transcript for accuracy by reading through it while watching the video. Finally, the two students watched the video together and resolved all discrepancies in how specific utterances should be transcribed by discussing them and reaching consensus. The entire transcription process was monitored by the laboratory manager, who served as an arbitrator if the students were unable to reach consensus regarding how any specific utterance should be transcribed. In addition, the laboratory manager transcribed 10% of the samples (that she had not been involved in arbitrating) herself. No discrepancies were noted in this check between what the laboratory manager recorded and what the combined efforts of the graduate students yielded. These methods were similar to those of other investigators (e.g., Hewitt et al. 2005).

After all transcription had been completed, each transcript was analyzed using SALT. Only complete and intelligible utterances were used. An utterance was defined in this work as a Communication Unit, which in turn is defined as an independent
clause and its modifiers (Loban 1976). Five language measures were selected for use as follows:

1. Mean length of utterances in morphemes (MLU) was computed as a measure of syntactic abilities. This metric was developed as part of Brown’s stages of language development (1973), who described it as a critical indicator of syntactic skill because almost any enhancement in knowledge serves to increase length. Brown viewed the utility of the measure as hitting asymptote at roughly an MLU of four, and others have criticized the use of this measure with children beyond preschool (Klee 1992; Rolls et al. 1996; Crain & Lillo-Martin 1999). Nonetheless, investigations have found MLU to be sensitive to syntactic abilities in older children, at least when language deficits are suspected (e.g., Condouris et al. 2003). For example, Hewitt et al. (2005) examined competencies for a variety of language skills in kindergartners with SLI and those with typical language development. MLUs were well above four for both groups: 5.82 for children with SLI and 6.86 for those with typical language development. These authors found that the children with SLI had poorer scores than their normally developing peers on most of the other skills evaluated, and MLU was highly predictive of those deficits. Thus, MLU was selected for use in the present study as an indicator of syntactic abilities. MLU was computed on the analysis set of complete and intelligible utterances for the entire 15-min sample, which seemed appropriate because it is not a count of specific structures so is not dependent on the number of utterances used to compute it.

2. The numbers of conjunctions were computed on the first 100 utterances as a measure of syntactic complexity (e.g., Bloom et al. 1980). The conjunction and was excluded from this analysis because and is used even by linguistically unsophisticated children to string clauses together (Menyuk, 1969; Bloom et al. 1980). Conjunctions other than and provide a stronger metric of a child’s ability to connect clauses and mark semantic relations. Specifically, the conjunctions that were counted by SALT were: after, as, because, but, if, or, since, so, then, until, and while. Although the use of conjunctions usually increases MLU, counting conjunctions provides a slightly different indicator of syntactic complexity because it is possible to increase MLU without additional clauses by elaborating noun and/or verb phrases. Furthermore, syntactic complexity can vary across sentences of the same length, which would be missed in analysis if only MLU were considered. For this study, types of conjunctions were not evaluated separately (other than by the exclusion of and) because too few of any one type were produced (other than and) to provide a reliable metric on its own.

3. The number of personal pronouns was computed on the first 100 utterances, and used as a measure of the development of unbound morphemes. The ability to use personal pronouns correctly requires that the speaker recognize attributes of the words to which they refer, such as gender, as well as syntactic constraints, such as case. To gauge how use of personal pronouns compared with the use of pronouns more generally, the total number of pronouns (of all sorts) was also computed for the 100-utterance analysis set, and personal pronouns were evaluated as a proportion of those totals. The specific personal pronouns counted in this analysis were: he, her, him, I, it, me, she, them, they, us, we, and you.

4. The number of word-final bound morphemes was also computed on the first 100 utterances. In this analysis, all inflectional morphemes were examined and were specifically: verb-related -ed, -s, -ing; noun-related plural -s and possessive -s; and adjective-related -er and -est. As with conjunctions, too few of each type were produced to provide a reliable metric on its own. Furthermore, having a variety of bound morphemes was considered desirable in this instance because some of the words containing bound morphemes could be represented in the lexicon of these children as unanalyzed wholes; others could be represented as root plus affix. It is especially that latter case that would be expected to correlate with phonological sensitivity, and uncovering that relationship could be missed if only a subset of bound morphemes was included in the analysis.

A reason for including this measure of bound morphemes was to test the sensitivity of the methods used in the study to uncover relationships between phonological and language structures, where they exist. The use of bound morphemes (or, at least some of them) would be expected to depend on children’s sensitivity to word-internal phonological structure, and word-final bound morphemes would be expected to depend specifically on sensitivity to structure at the ends of words. If that relationship were found for bound morphemes, but not other structures (in particular, personal pronouns), it would lend credence to the argument that developing abilities to use these other structures is not heavily dependent on emerging sensitivity to phonological structure. To try to gauge whether there were differences between groups in the use of bound morphemes in obligatory contexts, the numbers of obligatory contexts were considered, as well. These are defined as instances in which a bound morpheme is required to preserve grammatical accuracy.

5. The number of different words (NDW) was counted across the first 100 utterances obtained in the language sample, as others have done (e.g., Watkins et al. 1995; Hewitt et al. 2005). This measure is sometimes referred to as a metric of productive vocabulary because it indicates how well children can incorporate items in their lexicons into the language they produce (Pérez-Leroux et al. 2012). In this case, the number of total words (NTW) across the 100-utterance set was computed, as well, and NDW given as a proportion of NTW to examine potential relationships of these two variables for each group. This proportion is traditionally termed the type-token ratio (Templin, 1957) and typically does not vary for children with NH depending on whether they have normal language or SLI (e.g., Watkins et al. 1995).

Phonological Awareness • Three tasks were used to assess phonological awareness. These specific tasks were selected to vary in the precise phonological structure they examined and in the level of metalinguistic skill required to complete the task. The signal processing performed by CIs would be expected to preserve various levels of structure differently, and work by others (e.g., Liberman et al. 1974; Stanovich et al. 1984) has shown that even children with NH develop sensitivity to different kinds of structure at different ages. Metalinguistic awareness refers to the ability to focus on linguistic structure itself, and this ability has been shown to develop as a result of language experience (Cazden, 1974). Having variability on both these attributes (i.e., sensitivity to phonological structure per se and metalinguistic awareness) diminished the possibility of missing a critical difference in competencies between groups, if one should exist. Each phonological awareness task used in this study has been used previously and has been shown to reliably distinguish between children with good and poor sensitivity to phonological structure (e.g., Nittrouer & Burton, 2005).
for each phonological awareness task are available in the online appendix of Nittrouer et al. (2012).

All phonological awareness tasks were administered in an audiovisual format to minimize the possibility that children with CIs would perform poorly because of problems recognizing the test items, which could happen in an audio-only format. Each task had 48 items. The syllable-counting (SC) task involved the child seeing and hearing the talker in the video (a man) say a word. The child needed to tap on the table in time to each syllable while repeating the word and report how many syllables were in the word. Syllable structure is well represented in the amplitude structure of the speech signal because syllables generally involve an articulatory constriction on one or both sides, with an open configuration at syllable middle. The amplitude structure that arises as a result of syllable production involves change between minima and maxima. Consequently, syllable structure should be well-preserved by CI signal processing. Furthermore, sensitivity to this level of structure developmentally precedes sensitivity to individual phonemes (Liberman et al. 1974). Thus, it was predicted that children with CIs should be sensitive to this level of phonological structure. Nonetheless, the task demands of tapping in synchrony to the production of each syllable and then counting the number of taps introduced the need for some level of metalinguistic awareness.

In the initial consonant same-different (ICSD) task, the child heard and saw the talker say two words. The child was then asked to report whether the two words started with the same or different sounds. All words were monosyllabic, and most (75%) involved singletons as the initial consonant; 25% involved two-consonant clusters. Although this task required sensitivity to explicitly phonemic structure, metalinguistic demands were less rigorous than for the SC task.

In the final consonant choice (FCC) task, the child heard and saw the talker say a target word. As with the ICSD task, all words were monosyllabic, and 25% included two-consonant word-final clusters. The child had to repeat the target word correctly. Three opportunities were provided to repeat it correctly. If children could not do so within that time frame, that test item would not be included. However, that was not a problem for any of these children because they all were able to recognize all the words with audiovisual presentation. After the target was repeated, three more words were presented, and the child had to report which of the three had the same ending sound as the target. This was the hardest of the three phonological awareness tasks, both because sensitivity to syllable-final phonemic structure is acquired later than sensitivity to syllable-initial structure (Stanovich et al. 1984), and because greater demands were placed on short-term memory.

Practice was provided before testing with each task, and feedback given during that practice. During testing, the task was discontinued if a child responded incorrectly to six consecutive items. This procedure is often incorporated into standardized assessment tools. The percentages of correct answers were used as dependent measures of phonological awareness.

Lexical Knowledge • Expressive vocabulary is commonly used as a metric of lexical abilities. In this study, it was assessed with the Expressive One-Word Picture Vocabulary Test, or EOWPVT (Brownell 2000). This task requires the child to provide the words that label a series of pictured items shown one at a time on separate pages. This test is designed for children from 2 to 18 years of age. Both raw and standard scores are reported, but only raw scores were used in statistical analyses because they are generally more continuous in distribution and sensitive to group differences.

RESULTS
Six children with CIs did not produce 100 complete and intelligible utterances, so their data were not included in the analysis. This meant that there was data from 21 children with CIs in the analysis, which provided adequate power (87%) to detect statistically significant differences in performance between children with NH and children with CIs, with a Cohen’s d of 1.00 and an α level of 0.05.

The six children whose data were removed from analysis were indistinguishable from the other children with CIs in demographic and audiometric factors. Their mean SES score (and SD) was 36 (7), which was slightly higher than the overall group mean. Mean age of identification of hearing loss was 7 months (5 months), and mean age of first implant was 23 months (16 months). These audiometric variables match those for the larger group. All six children who failed to produce 100 complete and intelligible utterances had two implants at the time of testing.

Before analyses were conducted on the scores for the remaining 40 children, all dependent measures were screened to ensure that scores were normally distributed and there was homogeneity of variances between groups. The mean numbers (and SDs) of complete and intelligible utterances were 180 (39) and 154 (31) for children with NH and CIs, respectively. These numbers represent means of 98% (2%) of all utterances collected for children with NH, and 93% (4%) of all utterances for children with CIs. This difference is statistically significant, t(38) = 4.59, p < 0.001. (Throughout this report, precise statistical outcomes are reported for p < 0.10; for p > 0.10, results are described simply as not significant.) Thus, slightly fewer utterances from children with CIs were complete and intelligible.

Language Measures
Table 2 shows mean scores for each group on the measures obtained from SALT. Before evaluating differences between groups, however, three of the five measures were examined in more depth. That was done to get a broader picture of language production for these children, and to ensure that the measures selected for consideration were not constrained by other language measures in any way that would make them invalid metrics of the structures of interest.

Personal Pronouns • The mean numbers of total pronouns (and SDs) were 114.2 (20.2) for children with NH and 91.3 (21.8) for children with CIs, and this difference is significant, t(38) = 3.43, p = 0.001. Personal pronouns (shown in Table 2) accounted for 66% and 69% of these totals for children with NH and CIs, respectively; this difference is not statistically significant. Across all classes, children with CIs produced fewer pronouns than children with NH, but personal pronouns were the most frequently used class of pronouns by children in both groups. This analysis suggests that counts of personal pronouns served as a valid index of pronoun use in general by these children.

Bound Morphemes • In addition to the numbers of bound morphemes shown in Table 2, counts were obtained of the numbers of contexts where one of the word-final bound morphemes counted in this study would be obligatory. For children with NH, there was a mean of 54.6 (9.3) obligatory contexts;
No. different words 182.0 (16.3) 153.3 (33.7) 1.08
No. bound morphemes 53.8 (9.3) 43.6 (14.6) 0.83
No. personal pronouns 74.8 (14.5) 62.2 (14.7) 0.86

This analysis suggests that counting the number of bound morphemes used by each child is given as

Significant, for children with CIs, it was 418.0 (88.0), and this difference was

The bottom two rows of Table 3 show mean scores for phonological awareness and expressive vocabulary

Group Differences

To examine whether significant differences existed between groups in the use of the language structures shown in Table 2, independent-samples t tests were performed on each. Significant differences were found for all five measures: MLU, t(38) = 3.48, p = .001, conjunctions, t(38) = 3.23, p = .003, personal pronouns, t(38) = 2.72, p = .010, bound morphemes, t(38) = 2.60, p = .013, and NDW, t(38) = 3.36, p = .002. Results from these analyses indicate that the children with CIs trailed their peers with NH in the acquisition of all these structures.

Table 2 also shows effect sizes in the form of Cohen’s ds for all language measures. This metric is the difference in group means, normalized by SD. In general, mean scores for children with CIs were close to 1 SD below the means of children with NH (i.e., d = 1). Although the metrics of language abilities were different across studies, this finding generally matched results of Geers et al. (2003) and Boons et al. (2012).

Phonological Awareness

Mean percent correct scores for the three phonological awareness tasks are shown in the top three rows of Table 3. Cohen’s ds are also shown. One child with NH became ill half-way through the ICSD task, so testing could not be completed. Independent-samples t tests were done on scores for each of the three tasks. No significant difference was found for SC, t(38) = 1.82, p = .077, but significant differences were observed for ICSD, t(37) = 4.75, p < .001, and FCC, t(38) = 7.34, p < .001. Cohen’s ds showed that the mean scores of children with CIs on the ICSD and FCC measures were more than one and a half SDs below the means of children with NH. The failure to find a significant difference in scores on SC suggests that children with CIs were able to handle the metalinguistic component of this task adequately, thus diminishing the probability that differences in metalinguistic abilities accounted for the group differences observed in the other two tasks.

Lexical Knowledge

The bottom two rows of Table 3 show mean scores for expressive vocabulary, both raw and standard. An independent-samples t test on raw scores showed a significant difference between the groups, t(38) = 3.45, p = .001. Cohen’s ds revealed that children with CIs scored more than 1 SD below the means of children with NH.

Lexical Knowledge

The bottom two rows of Table 3 show mean scores for expressive vocabulary, both raw and standard. An independent-samples t test on raw scores showed a significant difference between the groups, t(38) = 3.45, p = .001. Cohen’s ds revealed that children with CIs scored more than 1 SD below the means of children with NH.

Cohen’s d

Cohen’s d is a measure of effect size that indicates the magnitude of difference between two groups. It is calculated by dividing the difference between the means of the two groups by the pooled standard deviation. A Cohen’s d of 0.2 is considered a small effect, 0.5 is medium, and 0.8 is large. Cohen’s ds are shown in the last column of Table 3, providing a standardized measure of the magnitude of the differences observed between children with NH and children with CIs.

Table 3. Means and SDs for children with NH and CIs on phonological awareness and expressive vocabulary

<table>
<thead>
<tr>
<th>Task</th>
<th>NH</th>
<th>CIs</th>
<th>Cohen’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phonological awareness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syllable counting</td>
<td>67 (37)</td>
<td>47 (32)</td>
<td>0.58</td>
</tr>
<tr>
<td>Initial consonant</td>
<td>93 (10)</td>
<td>66 (23)</td>
<td>1.58</td>
</tr>
<tr>
<td>same-different</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final consonant choice</td>
<td>59 (22)</td>
<td>16 (15)</td>
<td>2.28</td>
</tr>
<tr>
<td>Expressive vocabulary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raw scores</td>
<td>77 (10)</td>
<td>63 (15)</td>
<td>1.10</td>
</tr>
<tr>
<td>Standard scores</td>
<td>110 (11)</td>
<td>93 (17)</td>
<td>1.19</td>
</tr>
</tbody>
</table>

Percentages of correct responses are shown for the initial consonant same-different, syllable counting, and final consonant choice tasks. Raw and standard scores are shown for expressive vocabulary.
Explaining Variance

Next, analyses were done to examine the extent to which variance in the five language measures might be explained by phonological awareness and expressive vocabulary. These analyses were performed on data only from children with CIs because they were the group of primary interest. Information regarding the strength of relationship among these skills could be essential to the design of intervention programs for children with CIs. Nonetheless, it is worth noting that no significant correlations were observed between the language measures and phonological awareness or lexical knowledge of the children with NH. However, two measures of phonological awareness were correlated with expressive vocabulary scores for children with NH: SC, $r = 0.69$, and ICSD, $r = 0.60$. These correlations likely reflect the fact that lexical development is somewhat dependent on phonological structure for these children with NH.

The first analyses involved computing Pearson product-moment correlation coefficients between every pairwise combination of scores, and Table 4 shows these correlation coefficients. The cells displaying correlation coefficients between language measures and scores of phonological awareness are highlighted. Several results are worthy of mention. First, scores for SC were not correlated with any measure of grammatical ability for children with CIs. Second, measures of sensitivity to phonemic structure (ICSD and FCC) explained no variance on either the number of conjunctions or the number of personal pronouns used by these children. Third, ICSD and FCC explained between 18% and 22% of the variance in MLU and NDW (i.e., r was between 0.43 and 0.47). Finally, where bound morphemes are concerned, only FCC was associated with any significant amount of variability, and that was the highest correlation coefficient found among measures of phonological awareness and language structures ($r = 0.59$). That finding had been predicted because these bound morphemes were all in word-final position, so children’s sensitivity to phonemic structure at the ends of words (as measured by the FCC task) should be related to their abilities to learn inflectional morphology in that position. This finding indicates that the methods used were valid, meaning they were able to capture relationships between phonological awareness and grammatical abilities where they existed.

The bottom row of Table 4 shows correlation coefficients for (raw) expressive vocabulary scores and measures of both grammatical abilities and phonological awareness. For these children with CIs, correlations between expressive vocabulary and three measures of language structure were significant: MLU, bound morphemes, and NDW. When it comes to phonological awareness, only the correlation coefficient between expressive vocabulary and ICSD was significant, but it was weaker than what was found for children with NH. This last outcome suggests that vocabulary acquisition for these children with CIs in kindergarten may have been just starting to reflect sensitivity to word-internal structure.

Next, stepwise regression analyses were performed. These analyses were done largely to see if phonological awareness had any effect on the development of grammatical abilities, independent of lexical knowledge. To examine that possibility, separate analyses were done for each of the five language measures, using all three phonological awareness and the expressive vocabulary scores as predictor variables. These analyses were done only for children with CIs. Two of the regression analyses had no significant solutions: conjunctions and personal pronouns. For two other language measures, expressive vocabulary was found to explain significant proportions of variance, with no phonological awareness score explaining any significant amount of additional variance: MLU, standardized β for expressive vocabulary = 0.670, $p < 0.001$, and NDW, standardized β for expressive vocabulary = 0.751, $p < 0.001$. A significant solution involving a phonological awareness measure was found only for bound morphemes, where the standardized β for FCC was 0.458, $p = 0.017$, and the standardized β for expressive vocabulary was 0.420, $p = 0.027$. The finding that the use of these morphemes depended equally on lexical knowledge and sensitivity to phonological structure at the ends of words might mean that words with bound morphemes were starting to be analyzed by children with CIs into root and affix but may still have been functioning as unanalyzed wholes to some extent. Thus, even though the correlation coefficients shown in Table 4 give the appearance that acquisition of grammatical abilities in these children with CIs was explained at least partly by their sensitivity to phonological structure, the stepwise regressions showed that once the variance explained by lexical knowledge was removed, no additional variance was explained by phonological awareness. The exception was for bound morphemes, and skill using that form of morphological structure had been predicted to be related to sensitivity to word-final phonemic structure.

Audiological and Treatment Effects for Children With CIs

Next, outcomes for children with CIs were examined to see whether factors related to their hearing loss or treatment of that

TABLE 4. Pearson product-moment correlation coefficients among each possible pair of measures for children with CIs

<table>
<thead>
<tr>
<th></th>
<th>MLU</th>
<th>Conj</th>
<th>Per Pro</th>
<th>B Mor</th>
<th>NDW</th>
<th>SC</th>
<th>ICSD</th>
<th>FCC</th>
<th>EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLU</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conjunctions</td>
<td>0.49*</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal pronouns</td>
<td>0.71†</td>
<td>0.45*</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bound morphemes</td>
<td>0.70†</td>
<td>0.03</td>
<td>0.39</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDW</td>
<td>0.90†</td>
<td>0.43*</td>
<td>0.44*</td>
<td>0.64†</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syllable counting</td>
<td>0.11</td>
<td>-0.14</td>
<td>-0.19</td>
<td>0.25</td>
<td>0.13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial consonant S/D</td>
<td>0.45*</td>
<td>0.04</td>
<td>0.30</td>
<td>0.36</td>
<td>0.43†</td>
<td>0.29</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final consonant choice</td>
<td>0.41</td>
<td>0.02</td>
<td>0.25</td>
<td>0.59†</td>
<td>0.47†</td>
<td>-0.15</td>
<td>0.81†</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Expressive vocab</td>
<td>0.67†</td>
<td>0.26</td>
<td>0.24</td>
<td>0.56†</td>
<td>0.75†</td>
<td>0.34</td>
<td>0.47*</td>
<td>0.31</td>
<td>1</td>
</tr>
</tbody>
</table>

Shaded cells indicate correlations between PA and SALT measures.

* $p < 0.05$
† $p < 0.001$
hearing loss could explain any significant amounts of variance in grammatical abilities. SES was included in these analyses.

Pearson product-moment correlation coefficients were computed between each of the five measures of language structure and the factors of SES, age at identification, age at first implant, age at second implant, length of first implant experience, and preimplant better-ear pure-tone average. Only age at first implant was significantly correlated with any of the language measures: MLU, \(r = -0.641, p = 0.002 \), and NDW, \(r = -0.570, p = 0.007 \). These negative correlation coefficients indicate that the earlier children received their first implants, the better their abilities were to use these language structures. No other factor was found to be related to grammatical abilities for these kindergarten children. This finding does not necessarily mean that none of these other factors contributed to the grammatical capabilities of these children with CIs. In this case, it may reflect the fact that variability in these other factors across the children in this study was highly constrained. For example, all children in the present study were identified with hearing loss before the age of 24 mo. Although the variability within that 2-year span was not sufficient to explain any variance in measures of grammatical abilities, it would be reasonable to predict that these abilities would be negatively affected if children were identified much later than the age of 2 years.

Turning to possible prosthesis effects, Tables 5 and 6 show means for the language measures for children with one or two CIs, and for children with some or no bimodal experience, respectively. One child was still using a hearing aid on the ear contralateral to the one with a CI at the time of testing. That child was excluded from these analyses because the child did not fit cleanly into any of the groups for which data are shown in these two tables. From Table 5, it does not appear that there was any effect of using one or two CIs, and \(t \) tests performed on these scores failed to reveal any significant differences. From Table 6, however, it appears that children who had a period of bimodal experience performed better on all measures than children with no such experience. When \(t \) tests were performed, the effect was significant for just two measures: MLU, \(t(18) = 2.08, p = 0.052 \), and pronouns, \(t(18) = 2.22, p = 0.040 \).

DISCUSSION

The present study examined the abilities of kindergarten children with CIs to use various kinds of language structure in their production. The motivation for this study was to see if children with CIs could acquire knowledge about language structures that would not necessarily depend on sensitivity to phonological structure, because that knowledge could facilitate their speech recognition in everyday settings. Three specific goals were addressed. First, the grammatical abilities of these children were measured and compared with those of children with NH. Outcomes of this comparison were evaluated against earlier studies of language abilities in children with CIs to see if newer implant technologies and approaches to treatment are influencing language development in children with CIs.

The second goal of this study was to evaluate the extent to which these children’s grammatical abilities depended on their phonological awareness and lexical knowledge. The answer to this particular question should have significant implications for intervention. Children with CIs have been found to have deficits in their phonological awareness, and those deficits likely arise because of the degradation in signal quality incurred by implant processing, even with current strategies. Accordingly, if grammatical abilities were largely explained by phonological awareness, sweeping improvements in grammatical abilities for these children would mostly require waiting for still better processing strategies to be developed and implemented. If instead, grammatical abilities develop even somewhat independently of sensitivity to phonological structure, then it might be possible to facilitate the acquisition of grammatical skills through intervention focused on that level of language structure, even for children with delayed phonological awareness. This approach differs from what might be termed “bottom up” approaches, which are those placing an early emphasis on building skills in the detection and production of individual phonemes or syllables. Only after children acquire a certain level of skill at detecting or producing these linguistic units does intervention move to a focus on sentence-level structures.

The third goal of the present study was to examine how well specific variables related to hearing loss and its treatment account for the emergence of grammatical abilities. As with the examination of phonological awareness, this line of investigation could shed light on how early intervention might be modified to facilitate further the acquisition of language structures.

Outcomes of the present study showed that children who received CIs within the past decade continue to lag behind their peers with NH in grammatical abilities, but there are several reasons to suspect that it is not strictly due to deficits in phonological awareness. Cohen’s \(d \)s for differences in performance

Table 5. Means and SDs for the measures for children with one or two CIs at the time of testing

<table>
<thead>
<tr>
<th>No. Implants</th>
<th>One CI M (SD)</th>
<th>Two CIs M (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLU</td>
<td>4.7 (0.4)</td>
<td>4.9 (1.2)</td>
</tr>
<tr>
<td>Conjunctions</td>
<td>11.4 (4.6)</td>
<td>14.4 (8.3)</td>
</tr>
<tr>
<td>Personal pronouns</td>
<td>62.1 (11.2)</td>
<td>63.3 (17.1)</td>
</tr>
<tr>
<td>Bound morphemes</td>
<td>40.6 (8.6)</td>
<td>46.6 (17.7)</td>
</tr>
<tr>
<td>NDW</td>
<td>146.9 (23.6)</td>
<td>162.1 (36.6)</td>
</tr>
</tbody>
</table>

Numbers of children in each group are shown.

Table 6. Means and SDs for the measures with some bimodal experience or no bimodal experience at the time of receiving a first implant

<table>
<thead>
<tr>
<th>Bimodal Experience</th>
<th>Some M (SD)</th>
<th>None M (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLU</td>
<td>5.2 (0.72)</td>
<td>4.4 (0.99)</td>
</tr>
<tr>
<td>Conjunctions</td>
<td>13.9 (7.0)</td>
<td>12.5 (7.4)</td>
</tr>
<tr>
<td>Personal pronouns</td>
<td>69.5 (13.1)</td>
<td>56.2 (13.7)</td>
</tr>
<tr>
<td>Bound morphemes</td>
<td>48.5 (11.0)</td>
<td>39.9 (17.3)</td>
</tr>
<tr>
<td>NDW</td>
<td>163.3 (30.1)</td>
<td>148.7 (34.2)</td>
</tr>
</tbody>
</table>

Numbers of children in each group are shown.
on the phonological awareness tasks between children with NH and those with CIs were close to a value of two. This finding indicates that children with CIs performed more poorly relative to the control group on phonological awareness than on any other measure—dependent or predictor—obtained in this study. In particular, when it comes to language measures, Cohen’s *d* ranged between 0.82 and 1.12. If grammatical development were predominantly dependent on the development of sensitivity to phonological structure, this discrepancy in effect sizes would not have been seen. Instead, performance of children with CIs on the language measures would have been constrained by their performance on the phonological awareness tasks such that Cohen’s *d* would have been either similar across the two kinds of measures, or larger for the measures of language structures. Thus, it seems fair to conclude that children acquire sensitivity to phonological structure and their knowledge of language structures at least somewhat independently. In fact, children’s expressive vocabulary skills explained more variance in outcomes for the language measures than did the measures of phonological awareness. Although the lexical representations of children with CIs are likely less differentiated than those of children with NH due to poorer sensitivity to phonological structure—these children with CIs were apparently able to learn how to combine and inflect those lexical items, to some extent.

A reasonable explanation for the deficits in grammatical abilities observed for children with CIs could involve the impoverishment in language experience resulting from the hearing loss itself. Such deficits have also been reported for children with histories of otitis media with effusion and children growing up in poverty (Nittrouer & Burton 2005), two groups of children who would be expected to suffer diminished language experience for reasons other than permanent sensorineural hearing loss. In the present study, support for the suggestion that diminished experience might be largely responsible for the weaker grammatical skills observed for children with CIs, compared to peers with NH, was obtained from the fact that age at first implant explained a significant amount of variance in scores on the language measures. Age at which a deaf child receives an implant is one factor that accounts for the amount of language experience obtained. Other factors can include the amount of time spent in intervention, quality of that intervention, and interaction style of the parents (Nittrouer 2010). If indeed diminishment in language exposure and experience accounts for the deficits observed in the present study, then enhancing intervention should be the primary approach taken to improve the observed outcomes.

Results addressing the third goal of the study emphasize the critical role played by early implantation to the acquisition of language skills. Age at first implant was the only variable related to hearing loss or its treatment found to correlate significantly with the language measures.

Comparison With Earlier Studies

Results of this study match those reported in previous studies of children implanted with earlier generations of CIs. In particular, the reports reviewed in the Introduction (Geers et al. 2003; Boons et al. 2012) tested children who almost invariably received CIs and processors with older technology than those received by the children in the present study. Both of those papers reported that children with CIs scored slightly more than 1 SD below the means of children with NH on tests of morphosyntactic abilities. Although the specific measures used in those studies differed from those of the present study, effect sizes were similar.

Weakness of the Present Study and Future Directions

This study collected narrative samples from children using a highly regimented scaffold to ensure some consistency in topic; nonetheless, those samples were shaped by the children themselves. From those samples, transcripts were generated and submitted to analyses of the language structures produced by the children. This method of evaluating language production provided an ecologically valid way of assessing the structures these children use in their daily discourse. At the same time, the method imposed some limitations. For example, numbers of obligatory contexts could not be equated across the two groups. In addition, specific types of conjunctions and bound morphemes could not reasonably be examined separately. A method of formal testing that uses well-designed probes provides the best way of ensuring that children in all groups have equal opportunities to use specific elements of grammatical structure. Nonetheless, it must surely be the case that the field benefits from having the kind of corroborating evidence that can only come from different studies using different methods. In this case, the outcomes of this study support findings of others who have examined language abilities in children with CIs using other methods, such as Svirsky et al. (2002) and Geers et al. (2003).

Several ideas for future research with children who have CIs are suggested by the outcomes of this study. In general, it seems important to explore further the relationships among various language structures in this population to understand how intervention should proceed. Recognizing the foundational skills that enable children with CIs to acquire knowledge about specific language structures will specify what skills should be emphasized in intervention, across the developmental continuum. A particular objective for future work should be to examine more carefully reorganizational processes in lexical acquisition by children with CIs. The regression analysis with bound morphemes indicated that sensitivity to word-internal phonemic structure explained some of the variance in children’s abilities to use these structures. This finding indicates that these children were starting to analyze that word-internal structure, and their abilities to do so explained their abilities to learn about bound morphemes. The ability to analyze structure in the ambient language—and even in the language children have started to use as unanalyzed structure—is critical to development and seems to happen most intensively during the preschool years for children with NH (Bowerman 1982). It would help teachers and clinicians design intervention, if this process and its timing were better understood for children with CIs.

Clinical Implications

Regarding clinical implications, the finding that expressive vocabulary scores explained significant amounts of variance in the language measures over and above what could be explained by phonological awareness alone indicates that neither lexical knowledge nor grammatical abilities are dependent solely on children acquiring sensitivity to phonological structure. That means that intervention with deaf children should be focused on facilitating the learning of new vocabulary and morphosyntactic structures, regardless of children’s sensitivity to phonological structure. That suggestion does not mean that intervention should not seek to help
children hone their sensitivity to phonological structure; rather, it means that intervention to facilitate the acquisition of lexical and morphosyntactic structure should not be postponed until some level of sensitivity to phonological structure is attained.

Another important implication of this study is that intervention must be provided to children with CIs beyond the preschool years. All children in this study had just completed kindergarten, and those with CIs showed significant delays in performance on grammatical, lexical, and phonological abilities. Thus, it is fair to conclude that any child with CIs entering school should be considered at risk of language delay. There are many benefits to placing these children in mainstream educational settings, but it must be understood that they still need focused intervention to support their continued acquisition of language.

CONCLUSIONS

This study was undertaken to measure the abilities of children who receive CIs to incorporate grammatical structures into their language production, and compare those abilities to those of children with NH. Additional goals involved examining whether measured grammatical abilities depended on phonological awareness, lexical knowledge or factors related to the hearing loss or its treatment. Results showed that children with CIs continue to lag in their development of grammatical abilities, in spite of technological advances and changes in treatment that have been implemented in recent years. The primary variables demonstrating predictive power for the language measures were expressive vocabulary scores and age at first implant. The finding that phonological awareness explained no variance over and above what was explained by expressive vocabulary scores (with one exception) suggests that intervention focused on helping children with CIs acquire grammatical abilities should be effective. There is no reason to wait until sensitivity to phonological structure has been acquired to a specified level before implementing strategies to help children learn about other kinds of language structures.

ACKNOWLEDGMENTS

This work was supported by Grant No. R01 DC006237 from the National Institute on Deafness and Other Communication Disorders, the National Institutes of Health. The authors thank John Grinstead for informative conversations regarding the measures used, and Aaron C. Moberly for helpful comments on the manuscript.

The authors declare no other conflict of interest.

Address correspondence: Susan Nittrouer, The Ohio State University, Columbus, Ohio, USA. E-mail: Susan.Nittrouer@osumc.edu

Received October 16, 2013; accepted March 15, 2014.

REFERENCES

tion of syntactic connectives and the semantic relations they encode. J Child Lang, 7, 253–261.

Boothroyd, A. (2013). Speech perception and Bayesian modeling. In: Pro-
ceedings of the 34th Congress of the Italian Society of Audiological Medicine and Phoniatrics.

Brownell, R. (2000). Expressive One-Word Picture Vocabulary Test (EOW-

Bryne, B. (1981). Deficient syntactic control in poor readers: Is a weak pho-
nomenal memory code responsible. Appl Psycholinguist, 2, 201–212.

Klee, T. (1992). Developmental and diagnostic characteristics of quantita-
tive measures of children’s language production. Top Lang Disord, 12, 28–41.